Moon Camp Project Gallery 2023-2024 

Get inspired with these amazing habitats for human space exploration designed by worldwide teams of students.

未来星际家园设计:星球种子的奇迹之梦 by Space Lords

创智学院创智实验室  广州-    China 10 years old, 8 years old   2 / Chinese Mars



Project description

1 概述

在这无垠星际的舞台上,我们追寻着一场奇迹,一个能够在太空深处扎根生长的梦。这是一场科技与浪漫的邂逅,是一颗星球种子的诞生,是未知星际的奇迹之梦。我们的设计,如同一个智慧的种子,旨在创造一个既是舒适家园,又能在无边太空中舞蹈的星际居住环境。

2 基本思路
这个星际家园的设计思路源于我们对太空的向往,以及对科技发展的深刻理解。我们的基本思路是将“埋地”和“模块化”这两个毫无关联的概念进行融合。通过将基地主体埋在行星地下,我们创造了一个稳定、安全的生存环境。而模块化设计则赋予了这个星球种子以生命,使其能够应对不同的任务和需求。

埋地设置地上地下空间展示以及地下模块单元展示
2.1 埋地设计的优势与应用
我们的设想过程仿佛是在宇宙中播种一颗独特的种子。首先,我们深入研究了目标行星的大气、温度和辐射水平,选择了最适合生长的“土壤”。接着,让“种子”潜伏其中。
2.1.1 安全性和温度稳定性
地下的土壤和岩石层具有优秀的隔热和防辐射特性,把人员主要活动空间埋于地下,可以减少高热、辐射、沙暴等对宇航员的健康风险,延长设备的寿命,提供更稳定的工作和生活环境。与此同时,图样和岩石热阻行,能减少温差变化,减少能源消耗,并优化基地内部的气候控制系统。
2.2.2隐蔽性和保密性
通过将基地埋入地下,基地的存在和活动可以更好地隐蔽起来,减少被外界观察和探测的风险。这对于保护宇航员的安全和隐私非常重要,特别是在可能存在潜在威胁的情况下。
2.2 模块化设计的优势与应用
2.2.1 灵活性与可扩展性
模块化设计通过将基地划分为独立的模块,使得基地的布局和功能可以根据需求进行灵活调整和扩展。每个模块都可以独立设计、制造、测试和运输,然后在现场通过统一的接口进行组装和连接。这种灵活性和可扩展性使基地能够适应不同任务需求和人员规模的变化。

运载飞船

运载飞船搭载一个模块仓

运载飞船搭载两个模块仓

2.2.2 工程效率和成本控制
模块化设计可以实现工程效率和成本控制的优势。通过模块化的制造和预制,可以减少基地建设过程中的时间和人力成本。模块化设计还可以通过标准化和规模化生产来降低材料和设备的成本。此外,模块化设计还可以减少建筑废料和资源的浪费,实现可持续的资源管理。
2.2.3 质量控制和安全性
模块化设计使得每个模块都可以在受控的环境中进行制造和测试,确保质量的一致性和可靠性。这种工厂化的制造过程可以减少施工现场的风险和安全问题。模块化设计还可以通过标准化的设计和制造流程来提高工程质量和安全性。
2.2.4 适应性与可重复利用性
模块化设计使得基地的组成部分可以灵活组合和重组,以适应不同任务和环境的变化。模块化的特性还意味着模块可以被拆卸、搬迁和重新利用,使得基地在任务完成后可以被重复利用或转移到其他地点。这种适应性和可重复利用性提高了基地的长期价值和可持续性。
2.2.5 可定制性和个性化
模块化设计可以根据需求进行定制,满足不同任务和人员的特定需求。每个模块可以根据特定的功能和要求进行设计和配置,以提供个性化的空间和设施。这种可定制性和个性化可以提高宇航员的舒适度和工作效率。
综上所述,因此基地可以在太空恶劣条件下提供一个相对稳定、安全和适宜居住的环境。它为宇航员提供了一个更好的工作和生活场所,同时减少对外界环境的依赖,为人类在太空上的持久居住和科学研究打下坚实的基础。

3 结构图样
设想一颗智慧的星球种子,这就是我们的设计。地下层,就像是这颗星球的“根”,包括宇航员居住区、实验室和娱乐区。而地下的模块,犹如星球的“花朵”,通过通道系统相互连接,构成一个完整的星际家园。
3.1 模块化结构概述
模块化设计是基地构建中一种重要的设计方法,它将基地划分为独立的模块,每个模块具有特定的功能和任务。模块化设计的核心思想是将基地拆分为相对独立的单元,使其更具灵活性和可扩展性。
3.2常用模块说明
3.2.1居住区模块化设计
居住区是基地中宇航员居住和休息的地方,模块化设计可以根据宇航员的需求和人数进行灵活的布局和配置。每个居住模块可以包含舱室、生活设施和娱乐设备,为宇航员提供一个舒适和私密的个人空间。

埋地生活仓
3.2.2实验室模块化设计
实验室是进行科学研究和实验的重要场所,模块化设计可以根据不同的科研需求定制不同的实验室模块。每个实验室模块可以包含特定的仪器设备、实验台和数据分析系统,以支持各种科学研究项目。

埋地工作仓

3.2.3埋地生态种植仓设计
埋地设计可以提供一个封闭的生态系统,实现废物处理和生物循环。通过合理设计和管理,废水、有机废弃物和二氧化碳等废物可以在基地内部进行处理和转化,产生可用的水、肥料和氧气,为基地的持续运行提供支持。
埋地生态种植仓
3.2.4水资源管理模块设计
基地埋地设计可以实现水资源的高效管理和循环利用。地下环境相对较为干燥,可通过收集和净化水分,将废水处理后再利用。通过水资源的循环利用,可以降低对外部供水的依赖,并减少水资源的浪费。
储水罐和污水处理器 埋地污水处理仓
3.2.4 其他应用领域
除了居住区、实验室和储存区,模块化设计还可以应用于基地的其他方面,如办公区、通信中心、医疗设施等。每个模块都可以根据特定的功能和要求进行设计和配置,然后通过连接和组合形成完整的基地结构。
讯号发射塔 太阳能发电系统
一颗颗智慧的星球种子,这就是我们的设计主要结构。这些种子植根于太空中的土壤,通过通道系统相互连接,生长成一个完整的星际家园。
5 创意点
本设计从太空种子概念出发,设计的初衷是在太空中埋下一颗种子,这颗种子在星际中扎下根,成为未来太空探险的起点,一颗奇迹之种子,从初衷出发,糅合了模块话和埋地设置两个概念。
5.1 太空探险的种子:
这个设计的实施性体现在它的模块化结构上。模块的独立性和可替换性,使得基地的建设和维护变得异常灵活,就像植物在成长过程中适应环境一样。每个模块都是一个独立的单元,可以独立运作,方便替换和更新。这种设计理念提高了基地的可维护性和可升级性,使其能够适应未来的科技进步和任务需求。
5.2 资源管理与循环利用:
设计中考虑了资源管理和循环利用的问题。在太空中,资源稀缺,对每一滴水、每一片空气都要充分利用。模块化设计不仅带来了灵活性,还为资源的高效利用提供了可能。系统内部的循环利用机制可以最大限度地减少对外部补给的依赖,使得基地更加独立和可持续。
5.3 未来展望与挑战:
这个设计代表了未来星际探险的一小步,但也面临着一系列的挑战。科技的不断进步将为设计带来新的可能性,同时也需要我们面对未知的风险和问题。基地建设的实际可行性需要进一步的研究和验证,而长时间的太空居住对人类身心的影响也需要深入的研究。

6 结语:
在这颗星球种子的梦幻中,我们看到了未来太空探险的可能性和希望。这个星际家园的设计不仅是科技的展示,更是人性关怀和对未知星际的勇敢探索。星球种子在宇宙中生根发芽,正如我们对未来的太空探险充满期待。这颗星球种子,是科技和梦想的交汇,是人类迈向星际未知的一次尝试。


English translation

1 Overview

On this endless interstellar stage, we are pursuing a miracle, a dream that can take root and grow in the depths of space. This is an encounter between technology and romance, the birth of a planet seed, and the miraculous dream of an unknown star. Our design, like a seed of wisdom, aims to create an interstellar living environment that is both a comfortable home and able to dance in the boundless space.

2 basic ideas
The design idea of this interstellar home comes from our yearning for space and our deep understanding of the development of science and technology. Our basic idea is to integrate the two unrelated concepts of “burial” and “modularity”. By burying the main body of the base underground on the planet, we create a stable and safe living environment. The modular design gives life to this planet seed, allowing it to cope with different tasks and needs.

Buried to set up above-ground and underground space display and underground module unit display
2.1 Advantages and applications of buried design
Our visioning process is like planting a unique seed in the universe. First, we conducted an in-depth study of the target planet’s atmosphere, temperature, and radiation levels to select the most suitable “soil” for growth. Then, let the “seed” lurk inside.
2.1.1 Safety and temperature stability
The underground soil and rock layers have excellent heat insulation and radiation protection properties. Burying the main activity space of personnel underground can reduce the health risks to astronauts such as high heat, radiation, sandstorms, etc., extend the life of equipment, and provide more stable work. and living environment. At the same time, the pattern and rock thermal resistance can reduce temperature differences, reduce energy consumption, and optimize the climate control system within the base.
2.2.2 Concealment and confidentiality
By burying the base underground, the presence and activities of the base can be better concealed, reducing the risk of observation and detection by the outside world. This is important to protect the safety and privacy of astronauts, especially in situations where potential threats may exist.
2.2 Advantages and applications of modular design
2.2.1 Flexibility and scalability
The modular design allows the layout and functions of the base to be flexibly adjusted and expanded according to needs by dividing the base into independent modules. Each module can be designed, manufactured, tested and shipped independently, then assembled and connected on site via unified interfaces. This flexibility and scalability allows the base to adapt to varying mission requirements and changes in personnel size.

carrier spacecraft

The carrier spacecraft carries a module compartment

The carrier spacecraft carries two module compartments

2.2.2 Engineering efficiency and cost control
Modular design can realize the advantages of engineering efficiency and cost control. Through modular manufacturing and prefabrication, time and labor costs during base construction can be reduced. Modular design can also reduce the cost of materials and equipment through standardization and scaled production. In addition, modular design can also reduce the waste of construction waste and resources and achieve sustainable resource management.
2.2.3 Quality control and safety
The modular design allows each module to be manufactured and tested in a controlled environment, ensuring consistent quality and reliability. This factory-like manufacturing process reduces risks and safety issues on the construction site. Modular design also improves engineering quality and safety through standardized design and manufacturing processes.
2.2.4 Adaptability and reusability
The modular design allows the components of the base to be flexibly combined and reorganized to adapt to different tasks and changes in the environment. The modular nature also means that modules can be disassembled, relocated and repurposed, allowing the base to be reused or moved to another location after the mission is completed. This adaptability and reusability enhances the long-term value and sustainability of the site.
2.2.5 Customizability and personalization
The modular design can be customized to meet the specific needs of different tasks and personnel. Each module can be designed and configured according to specific functions and requirements to provide personalized spaces and facilities. This customizability and personalization improves astronaut comfort and productivity.
In summary, the base can provide a relatively stable, safe and livable environment under the harsh conditions of space. It provides astronauts with a better place to work and live, while reducing dependence on the external environment, laying a solid foundation for long-lasting human habitation and scientific research in space.

3 structural drawings
Imagine a smart planet seed, this is our design. The underground layer, like the “root” of the planet, includes astronaut living quarters, laboratories and entertainment areas. The underground modules are like the “flowers” of the planet, connected to each other through a channel system to form a complete interstellar home.
3.1 Overview of modular structure
Modular design is an important design method in base construction, which divides the base into independent modules, each with specific functions and tasks. The core idea of modular design is to split the base into relatively independent units to make it more flexible and scalable.
3.2 Description of common modules
3.2.1 Modular design of residential areas
The living area is where astronauts live and rest in the base. The modular design allows for flexible layout and configuration according to the needs and number of astronauts. Each housing module can contain cabins, living facilities and entertainment equipment to provide astronauts with a comfortable and private personal space.

Buried living warehouse
3.2.2 Laboratory modular design
The laboratory is an important place for scientific research and experiments. The modular design can customize different laboratory modules according to different scientific research needs. Each laboratory module can contain specific instrumentation, experimental benches, and data analysis systems to support various scientific research projects.

Underground work warehouse

3.2.3 Design of buried ecological planting warehouse
Buried design can provide a closed ecosystem for waste treatment and biological recycling. Through proper design and management, wastes such as wastewater, organic waste and carbon dioxide can be processed and transformed within the base to produce usable water, fertilizer and oxygen to support the continued operation of the base.
Underground ecological planting warehouse
3.2.4 Water resources management module design
The underground design of the base can achieve efficient management and recycling of water resources. The underground environment is relatively dry, and wastewater can be treated and reused by collecting and purifying water. Through the recycling of water resources, the dependence on external water supply can be reduced and the waste of water resources can be reduced.
Water storage tanks and sewage treatment tanks Underground sewage treatment bins
3.2.4 Other application areas
In addition to living areas, laboratories and storage areas, modular design can also be applied to other aspects of the base, such as office areas, communication centers, medical facilities, etc. Each module can be designed and configured according to specific functions and requirements, and then connected and combined to form a complete base structure.
Signal tower solar power system
Each intelligent planetary seed is the main structure of our design. These seeds are rooted in the soil in space, connected to each other through a channel system, and grow into a complete interstellar home.
5 creative ideas
This design starts from the concept of space seeds. The original intention of the design is to plant a seed in space. This seed will take root in the interstellar space and become the starting point for future space exploration. A seed of miracle. Starting from the original intention, it combines There are two concepts of modularity and underground setting.
5.1 The seeds of space exploration:
The implementability of this design is reflected in its modular structure. The independence and replaceability of modules make the construction and maintenance of the base extremely flexible, just like plants adapting to the environment as they grow. Each module is an independent unit and can operate independently, making it easy to replace and update. This design concept improves the maintainability and upgradeability of the base, allowing it to adapt to future technological advancements and mission needs.
5.2 Resource management and recycling:
Resource management and recycling issues were considered in the design. In space, resources are scarce, and every drop of water and every piece of air must be fully utilized. Modular design not only brings flexibility, but also provides the possibility for efficient use of resources. The recycling mechanism within the system can minimize dependence on external supplies, making the base more independent and sustainable.
5.3 Future prospects and challenges:
The design represents a small step toward future interstellar exploration, but it also faces its own set of challenges. The continuous advancement of science and technology will bring new possibilities to design, but also requires us to face unknown risks and problems. The actual feasibility of base construction requires further research and verification, and the impact of long-term space living on human body and mind also requires in-depth research.

6 Conclusion:
In the dream of this planet seed, we see the possibility and hope of future space exploration. The design of this interstellar home is not only a display of technology, but also human care and a brave exploration of the unknown interstellar space. Planet seeds take root and sprout in the universe, just as we look forward to future space exploration. This planet seed is the intersection of technology and dreams, and is an attempt by mankind to move towards the unknown interstellar world.


#Arts & Crafts #Other

Other Projects