3.1 – How will your Moon Camp provide astronauts with sustainable access to basic needs like water, food, air and power?
Translation:
On the moon, electrolysis is an effective way to obtain O₂ in the first place. Oxygen is found in the caves and craters of the Moon in the form of ice or water. Special robots are capable of searching for so-called small ice deposits and extracting pieces of ice from them by melting and drilling. The mined pieces are attached to the base on the nearest FLOAT track and sent on their way to the base. The pieces that arrive are taken over by a special robot that has an electrolysis system that breaks down water into hydrogen and oxygen. The resulting oxygen can be used as a secondary oxygen source, e.g. to create primary air inside the modules, when the plants and bacteria are not yet able to complete the task. Further production of oxygen is the task of plants and cyanobacteria grown in the lunar settlement. The CO₂ produced by human activities can be collected and directed to the plants in the plant growing module and the cyanobacteria living in the bacterial culture in the laboratory so that they can use it for photosynthesis. The plants would produce 60% of the oxygen and the rest cyanobacteria (the volume of the bacterial culture would be approx. 3 m³).
N₂ should be brought with you in cylinders, as it would be too expensive to get it from the moon. If the pressure inside the base is lowered to 62 kPa, the share of N₂ in the air composition could be lowered to 70% and the O₂ could be increased to 30%. As a result of the reduced pressure, the required air mass above the base would be approx. 1800 kg, of which 1260 kg would be N₂ and the rest O₂ (at 101 kPa, the air mass should be almost 3 tons). The risk of fire should not increase significantly. All air circulation would be managed by a 4-Bed CO₂ Scrubber system.
Food would be plants that can be grown in the plant growing module. Plant growth would be managed by an automated aeroponic system that supplies plants with CO₂ and nutrients from chemolithotrophs. The main plant species would be potatoes, which have all 9 necessary amino acids and several necessary nutrients, but in terms of food variability and other nutrients, smaller amounts of soybeans, rice, etc. can also be grown. There is a possibility that one plant growing module may not be enough for six people, so it is worth considering adding another one.
The primary energy source would be three 10 kW nuclear reactors. Two for the base and one for the robots. Solar panels would also be secondary.
Original text:
Kuul on O₂ esmaseks hankimiseks efektiivne viis elektrolüüs. Hapniku leidub Kuu koobastes ja kraatrites jää ehk vee kujul. Spetsiaalsed robotid on võimelised nn väikseid jäämaardlaid otsima ja sulatamise ning puurimise teel sealt jäätükke eraldama. Kaevandatud tükid kinnitatakse lähima FLOAT-i rajal oleva aluse külge ja saadetakse baasi poole teele. Kohale jõudnud tükid võetakse spetsiaalse roboti poolt üle, millel on elektrolüüsist koosnev süsteem, mis lagundab vee vesinikuks ja hapnikuks. Saadud hapnikku saab kasutada sekundaarse hapniku allikana, nt esmase õhu loomiseks moodulite sees, kui taimed ja bakterid pole veel võimelised ülesannet täielikult täitma. Edasine hapniku tootmine on Kuu-asulas kasvatatavate taimede ja tsüanobakterite ülesanne. Inimeste elutegevuse tagajärjel tekkiva CO₂ saab kokku koguda ja suunata taimekasvatusmoodulis olevate taimede ja labori bakterikultuuris elavate tsüanobakteriteni, et need saaksid seda kasutada fotosünteesiks. Taimed toodaksid 60% hapnikust ja ülejäänud tsüanobakterid (bakterikultuuri ruumala oleks ca 3 m³).
N₂ peaks kaasa võtma balloonidega, sest selle Kuult hankimine oleks liiga kulukas. Kui alandada baasisisene rõhk 62 kPa juurde, saaks N₂ osakaalu õhu koostises alandada 70% juurde ja O₂ oma tõsta 30%-ni. Alandatud rõhu tulemusena oleks nõutav õhu mass baasi peale ca 1800 kg, millest 1260 kg oleks N₂ ja ülejäänud O₂ (101 kPa juures peaks õhu mass olema pea 3 tonni). Tuleoht ei tohiks märgatavalt tõusta. Kogu õhuringlust haldaks 4-Bed CO₂ Scrubber süsteem.
Toiduks oleksid taimed, keda saab kasvatada taimekasvatusmoodulis. Taimede kasvamist haldaks automatiseeritud aeropooniline süsteem, mis varustab taimi CO₂ ja kemolitotroofidelt saadud toitainetega. Peamine taimeliik oleks kartul, millel on olemas kõik 9 vajalikku aminohapet ja mitmed vajalikud toitained, kuid toidu varieeruvuse ning teiste toitainete mõttes võib väiksemas koguses kasvatada ka nt sojaube, riisi vms. On võimalus, et ühest taimekasvatusmoodulist võib kuuele inimesele jääda väheks, seega tasuks kaaluda ka teise lisamist.
Primaarseks energiaallikaks oleksid kolm 10 kW tuumareaktorit. Kaks baasi jaoks ja üks robotite jaoks. Sekundaarsena oleksid ka päikesepaneelid.
3.2 – How will your Moon Camp deal with the waste produced by the astronauts on the Moon?
Translation:
Urine and wastewater are handled by a separate water treatment mechanism, using, for example, filters and water evaporation.
Excrement and various organic compounds are mainly decomposed by the anaerobic bacterium B. thetaiotaomicron. After that, the remaining nitrogen compounds are converted back to N₂ by denitrifying bacteria. Compounds that are not degraded by any bacteria must inevitably be thrown out of the base.
Radioactive waste, which is generated during the operation of the reactors, is buried deeper in the lunar soil, or the so-called nuclear waste grave.
Original text:
Uriini ja reoveega tegeleb tegeleb eraldi veetöötlus mehhanism, kasutades näiteks filtreid ja vee aurustumist.
Ekskremente ja erinevaid orgaanilisi ühendeid lagundab peamiselt anaeroobne bakter B. thetaiotaomicron. Peale seda alles jäänud lämmastikuühendeid muudavad N₂ tagasi denitrifitseerivad bakterid. Ühendeid, mida ükski bakter ei lagunda, tuleb paratamatult baasist välja visata.
Radioaktiivsed jäätmed, mis tekivad reaktorite töö käigus, maetakse sügavamale Kuu pinnasesse ehk nn tuumajäätmete hauda.
3.3 – How will your Moon Camp maintain communications with Earth and other Moon bases?
Translation:
A system called LunaNet has been built on the Moon to communicate with Earth. This system consists of satellites in lunar orbit, “masts” on the surface of the moon, and the Deep Space Network on Earth, and its function is to provide a data connection to a lunar settlement. The connection would not propagate through the cave wall to the base, so there should be one of the “masts” at the mouth of the cave (under the open sky) that is connected to the base via a cable.
Original text:
Maaga kommunikeerimiseks on Kuule ehitatud süsteem nimega LunaNet. See süsteem koosneb Kuu orbiidil olevatest satelliitidest, Kuu pinnal olevatest “mastidest” ja Maal olevast Deep Space Networkist ning selle funktsioon on andmesideühendus Kuu-asulale kättesaadavaks teha. Ühendus läbi koopaseina baasini ei leviks, seega peaks koopasuu juures (lageda taeva all) olema üks “mastidest”, mis on kaabli kaudu ühendatud baasiga.