discovery interactive image

Moon Camp Pioneers 2022 – 2023 Project Gallery

 

In Moon Camp Pioneers, each team’s mission is to 3D design a complete Moon Camp using the software of their choice. They also have to explain how they will use local resources, protect astronauts from the dangers of space and describe the living and working facilities in their Moon Camp.

Back to the Cave

Viimsi Gümnaasium  Viimsi vald-Harju maakond    Estonia 18, 17   3 / Estonian
3D design software: Fusion 360



1.1 – Project Description

Translation:

As time goes on, reaching beyond Earth is becoming more important. With dwindling mineral resources and growing environmental problems, people are looking beyond their home planet, hoping to find solutions to the problems there. The first step towards a better future starts with colonizing the Moon. Creating a fuel point on the moon would create an opportunity to move farther and deeper into our solar system. It is possible to acquire the necessary materials and resources from other planets to create advanced and more sustainable technology that would solve critical environmental problems on Earth and secure the future of humanity. Our lunar settlement would be the first of its kind and the cornerstone for the “conquest” of the moon, as well as the spread of humanity into space.

 

Original text:

Mida aeg edasi, seda rohkem on Maalt kaugemale jõudmine tähtsamaks muutumas. Vähenevate maavarade ja kasvavate keskkonna probleemidega vaadatakse koduplaneedist kaugemale, lootes leida sealt probleemidele lahendusi. Esimene samm parema tuleviku poole algab Kuu asustamisega. Kuule kütusepunkti loomine looks võimaluse liikuda edasi kaugemale ja sügavamale meie päikesesüsteemis. Teistelt planeetidelt on võimalik omandada vajalikke materjale ning ressursse, millega luua täiustatud ja jätkusuutlikumat tehnoloogiat, mis lahendaksid Maal esinevad kriitilised keskkonnaprobleemid ning kindlustaksid inimkonna tuleviku. Meie Kuu-asula oleks omasugustest esimene ja nurgakiviks Kuu “vallutamisele”, ühtlasi ka inimkonna kosmosesse levimisele.

1.2 – Why do you want to build a Moon Camp? Explain the main purpose of your Moon Camp (for example scientific, commercial and/or touristic purposes).

Translation:

Our base would be the first lunar settlement on Earth’s natural companion, so in a sense also an experiment that gives an idea of how to supplement future bases. The purpose of a particular lunar settlement would be primarily for scientific research. The composition and potential for humanity of various local resources are studied and analyzed, for example: the study of helium-3 isotopes, which could be used in thermonuclear reactors in the future. If possible, the rocks of the Moon are also studied in order to get an idea of the formation of this celestial body and its connection with the formation of the Earth.

 

Original text:

Meie baas oleks esimeseks Kuu-asulaks Maa looduslikul kaaslasel, seega mõnes mõttes ka eksperiment, mis annab aimu, kuidas tulevaseid baase täiendada. Konkreetse Kuu-asula eesmärk seisneks peamiselt teaduslikes uuringutes. Uuritakse ja analüüsitakse erinevate kohalike ressursside koostist ja potentsiaali inimkonnale, näiteks: heelium-3 isotoopide uurimine, mida tulevikus saaks kasutada termotuumareaktorites. Võimalusel uuritakse ka Kuu kivimeid, et saada aimu selle taevakeha formeerumisest ja seosest Maa kujunemisega.

2.1 – Where do you want to build your Moon Camp? Explain your choice.

Translation:

The location of the base is the South Pole, where you could have ideal conditions Central Mare Fecunditatis Pit-like cave and water reservoirs (Shackleton Crater, etc.). Many different caves are left behind from the magma that was once on the Moon. Such voids are able to provide protection to the base against various factors of the lunar environment, such as radiation, changing temperatures and micrometeorites. When building in a cave, you don’t have to put as much effort into building strong modules, because the cave is a cover for the base. The opening of the cave could be flat, because in this case the rovers could drive directly into the cave, or there would be no need for a lift. The cave should be large enough to accommodate the entire base and some rovers, the nuclear reactors would probably remain under the regolith pile near the mouth of the cave. The temperature of the cave would be stable between -40°C and +20°C, which means that the internal temperature of the base does not need to be adjusted much.

 

Original text:

Baasi asukohaks on lõunapoolus, kus võiksid ideaaltingimustes olla Central Mare Fecunditatis Piti laadne koobas ja veereservuaarid (Shackletoni kraater jne). Kunagisest Kuul olnud magmast on maha jäänud palju erinevaid koopaid. Säärased tühemikud on võimelised baasile kaitset pakkuma erinevate Kuu keskkonnategurite vastu, nagu näiteks kiirgus, muutuv temperatuur ja mikrometeoriidid. Koopasse ehitades ei pea nii palju vaeva nägema tugevate moodulite rajamisega, sest koobas on katteks baasile. Koopa avaus võiks olla lauge, sest sellisel juhul saaks kulguritega otse koopasse sõita ehk puuduks vajadus tõstuki järele. Koobas peaks olema küllalt suur, et ära mahutada terve baas ja mõned kulgurid, tuumareaktorid jääksid arvatavasti koopasuu lähistele regoliidikuhila alla. Koopa temperatuur oleks stabiilselt vahemikus -40°C kuni +20°C, mis tähendab, et baasi sisetemperatuuri ei pea palju reguleerima.

2.2 – How do you plan to build your Moon Camp? Consider how you can utilise the Moon’s natural resources, and which materials you would need to bring from Earth. Describe the techniques, materials and your design choices.

Translation:

Our base modules are inspired by the ISS BEAM module, so the walls would be inflatable. We would use Kevlar and polyester film for the walls, and aluminum alloy NASA-427, stainless steel, titanium, etc. for the floor and metal parts. The above-mentioned materials, thus also the modules, must be prepared on Earth. The base’s foundation would be created from sulfur- and regolith-based lunarcrete that could be produced by 3D-printing robots.

The establishment of our base would be multi-stage. The first stage would include one VIPER-like robot, a pair of solar panels and a device that would connect to LunaNet via a satellite orbiting the moon. The task of the aforementioned robot would be to check the suitability of the selected cave for the construction of the Base and the presence of water reservoirs.

In the second stage, two 10 kW nuclear reactors, three types of robots, folded modules and the FLOAT system would arrive. The task of the different robots would be to set the FLOAT system in order, according to the location of the water reservoirs; creating a foundation from lunarcrete in the cave and installing modules and creating a whole from them. Two nuclear reactors would be buried under a layer of regolith near the mouth of the cave to minimize radiation and dampen micrometeorite impacts.

The last to arrive is the spacecraft Orion capsule with six astronauts, a third 10 kW nuclear reactor and rovers. The last nuclear reactor will also be buried under the regolith layer. The so-called Lunar Gateway is the key to the arrival of humans on the Moon.

 

Original text:

Meie baasi moodulid on inspireeritud ISS-i BEAM-moodulist, seega seinad oleksid täispuhutavad. Seinade jaoks kasutaksime kevlarit ja polüesterkilet ning põranda ja metalldetailide jaoks kas alumiiniumi sulamit NASA-427, roostevaba terast, titaani vms. Eelmainitud materjalid, seega ka moodulid tuleb Maal valmis teha. Baasi vundament oleks loodud väävlil ja regoliidil põhinevast lunarcrete’ist, mida saaksid toota 3D-printivad robotid.

Meie baasi rajamine oleks mitmejärguline. Esimeses staadiumis saabuksid üks VIPER-iga sarnanev robot, paar päikesepaneeli ja seade, mis ühenduks Kuu orbiidil oleva satelliidi kaudu LunaNetiga. Eelmainitud roboti ülesanne oleks kontrollida väljavalitud koopa sobivust Baasi ehitamiseks ja veereservuaaride olemasolu.

Teises staadiumis saabuksid kaks 10 kW tuumareaktorit, kolme sorti robotid, kokkuvolditud moodulid ja FLOAT süsteem. Erinevate robotite ülesanne oleks FLOAT süsteemi töökorda seadmine, vastavalt veereservuaaride asukohale; koopasse lunarcrete’ist vundamendi loomine ja moodulite paigaldamine ning nendest ühe terviku loomine. Kaks tuumareaktorit maetaks koopasuu lähistele regoliidikihi alla, et minimaliseerida radiatsiooni ja summutada mikrometeoriitide tabamusi.

Viimasena saabuvad kosmoselaev Orioni kapsel koos kuue astronaudiga, kolmas 10 kW tuumareaktor ja kulgurid. Ka viimane tuumareaktor maetakse regoliidikihi alla. Inimeste saabumisel Kuule on vahelüliks nn Lunar Gateway.

2.3 – How does your Moon Camp protect and provide shelter to your astronauts against the Moon’s harsh environment?

Translation:

Our base’s primary defense against the elements of the lunar environment, such as micrometeorites and radiation, is the cavern. Its walls are thick enough to keep out most of the radiation. Also, the cave maintains a more stable temperature compared to the soil of the Moon (the shadow, i.e. the Sun, does not heat as much, but the Moon’s own geothermal energy does not allow the cave to get too cold, so the temperature is between -40°C and +20°C). The materials of the module wall, Kevlar and polyester film, are also quite radiation resistant.

 

 

Original text:

Meie baasi peamine kaitsevahend Kuu keskkonnategurite, nagu näiteks mikrometeoriitide ja radiatsiooni vastu, on koobas. Selle seinad on küllalt paksud, et enamus radiatsioonist eemal hoida. Samuti hoiab koobas ka Kuu pinnasega võrreldes stabiilsemat temperatuuri (varjuline ehk Päike ei küta nii palju, kuid Kuu enda geotermaalenergia ei lase koopal liiga külmaks minna, seega on temperatuur vahemikus -40°C kuni +20°C). Mooduli seina materjalid kevlar ja polüesterkile on ka ise üsna radiatsioonikindlad.

3.1 – How will your Moon Camp provide astronauts with sustainable access to basic needs like water, food, air and power?

Translation:

On the moon, electrolysis is an effective way to obtain O₂ in the first place. Oxygen is found in the caves and craters of the Moon in the form of ice or water. Special robots are capable of searching for so-called small ice deposits and extracting pieces of ice from them by melting and drilling. The mined pieces are attached to the base on the nearest FLOAT track and sent on their way to the base. The pieces that arrive are taken over by a special robot that has an electrolysis system that breaks down water into hydrogen and oxygen. The resulting oxygen can be used as a secondary oxygen source, e.g. to create primary air inside the modules, when the plants and bacteria are not yet able to complete the task. Further production of oxygen is the task of plants and cyanobacteria grown in the lunar settlement. The CO₂ produced by human activities can be collected and directed to the plants in the plant growing module and the cyanobacteria living in the bacterial culture in the laboratory so that they can use it for photosynthesis. The plants would produce 60% of the oxygen and the rest cyanobacteria (the volume of the bacterial culture would be approx. 3 m³).

N₂ should be brought with you in cylinders, as it would be too expensive to get it from the moon. If the pressure inside the base is lowered to 62 kPa, the share of N₂ in the air composition could be lowered to 70% and the O₂ could be increased to 30%. As a result of the reduced pressure, the required air mass above the base would be approx. 1800 kg, of which 1260 kg would be N₂ and the rest O₂ (at 101 kPa, the air mass should be almost 3 tons). The risk of fire should not increase significantly. All air circulation would be managed by a 4-Bed CO₂ Scrubber system.

Food would be plants that can be grown in the plant growing module. Plant growth would be managed by an automated aeroponic system that supplies plants with CO₂ and nutrients from chemolithotrophs. The main plant species would be potatoes, which have all 9 necessary amino acids and several necessary nutrients, but in terms of food variability and other nutrients, smaller amounts of soybeans, rice, etc. can also be grown. There is a possibility that one plant growing module may not be enough for six people, so it is worth considering adding another one.

The primary energy source would be three 10 kW nuclear reactors. Two for the base and one for the robots. Solar panels would also be secondary.

 

Original text:

Kuul on O₂ esmaseks hankimiseks efektiivne viis elektrolüüs. Hapniku leidub Kuu koobastes ja kraatrites jää ehk vee kujul. Spetsiaalsed robotid on võimelised nn väikseid jäämaardlaid otsima ja sulatamise ning puurimise teel sealt jäätükke eraldama. Kaevandatud tükid kinnitatakse lähima FLOAT-i rajal oleva aluse külge ja saadetakse baasi poole teele. Kohale jõudnud tükid võetakse spetsiaalse roboti poolt üle, millel on elektrolüüsist koosnev süsteem, mis lagundab vee vesinikuks ja hapnikuks. Saadud hapnikku saab kasutada sekundaarse hapniku allikana, nt esmase õhu loomiseks moodulite sees, kui taimed ja bakterid pole veel võimelised ülesannet täielikult täitma. Edasine hapniku tootmine on Kuu-asulas kasvatatavate taimede ja tsüanobakterite ülesanne. Inimeste elutegevuse tagajärjel tekkiva CO₂ saab kokku koguda ja suunata taimekasvatusmoodulis olevate taimede ja labori bakterikultuuris elavate tsüanobakteriteni, et need saaksid seda kasutada fotosünteesiks. Taimed toodaksid 60% hapnikust ja ülejäänud tsüanobakterid (bakterikultuuri ruumala oleks ca 3 m³).

N₂ peaks kaasa võtma balloonidega, sest selle Kuult hankimine oleks liiga kulukas. Kui alandada baasisisene rõhk 62 kPa juurde, saaks N₂ osakaalu õhu koostises alandada 70% juurde ja O₂ oma tõsta 30%-ni. Alandatud rõhu tulemusena oleks nõutav õhu mass baasi peale ca 1800 kg, millest 1260 kg oleks N₂ ja ülejäänud O₂ (101 kPa juures peaks õhu mass olema pea 3 tonni). Tuleoht ei tohiks märgatavalt tõusta. Kogu õhuringlust haldaks 4-Bed CO₂ Scrubber süsteem.

Toiduks oleksid taimed, keda saab kasvatada taimekasvatusmoodulis. Taimede kasvamist haldaks automatiseeritud aeropooniline süsteem, mis varustab taimi CO₂ ja kemolitotroofidelt saadud toitainetega. Peamine taimeliik oleks kartul, millel on olemas kõik 9 vajalikku aminohapet ja mitmed vajalikud toitained, kuid toidu varieeruvuse ning teiste toitainete mõttes võib väiksemas koguses kasvatada ka nt sojaube, riisi vms. On võimalus, et ühest taimekasvatusmoodulist võib kuuele inimesele jääda  väheks, seega tasuks kaaluda ka teise lisamist.

Primaarseks energiaallikaks oleksid kolm 10 kW tuumareaktorit. Kaks baasi jaoks ja üks robotite jaoks. Sekundaarsena oleksid ka päikesepaneelid.

3.2 – How will your Moon Camp deal with the waste produced by the astronauts on the Moon?

Translation:

Urine and wastewater are handled by a separate water treatment mechanism, using, for example, filters and water evaporation.

Excrement and various organic compounds are mainly decomposed by the anaerobic bacterium B. thetaiotaomicron. After that, the remaining nitrogen compounds are converted back to N₂ by denitrifying bacteria. Compounds that are not degraded by any bacteria must inevitably be thrown out of the base.

Radioactive waste, which is generated during the operation of the reactors, is buried deeper in the lunar soil, or the so-called nuclear waste grave.

 

Original text:

Uriini ja reoveega tegeleb tegeleb eraldi veetöötlus mehhanism, kasutades näiteks filtreid ja vee aurustumist.

Ekskremente ja erinevaid orgaanilisi ühendeid lagundab peamiselt anaeroobne bakter B. thetaiotaomicron. Peale seda alles jäänud lämmastikuühendeid muudavad N₂ tagasi denitrifitseerivad bakterid. Ühendeid, mida ükski bakter ei lagunda, tuleb paratamatult baasist välja visata.

Radioaktiivsed jäätmed, mis tekivad reaktorite töö käigus, maetakse sügavamale Kuu pinnasesse ehk nn tuumajäätmete hauda.

3.3 – How will your Moon Camp maintain communications with Earth and other Moon bases?

Translation:

A system called LunaNet has been built on the Moon to communicate with Earth. This system consists of satellites in lunar orbit, “masts” on the surface of the moon, and the Deep Space Network on Earth, and its function is to provide a data connection to a lunar settlement. The connection would not propagate through the cave wall to the base, so there should be one of the “masts” at the mouth of the cave (under the open sky) that is connected to the base via a cable.

 

Original text:

Maaga kommunikeerimiseks on Kuule ehitatud süsteem nimega LunaNet. See süsteem koosneb Kuu orbiidil olevatest satelliitidest, Kuu pinnal olevatest “mastidest” ja Maal olevast Deep Space Networkist ning selle funktsioon on andmesideühendus Kuu-asulale kättesaadavaks teha. Ühendus läbi koopaseina baasini ei leviks, seega peaks koopasuu juures (lageda taeva all) olema üks “mastidest”, mis on kaabli kaudu ühendatud baasiga.

4.1 – What scientific topic(s) would be the focus of the research in your Moon Camp? Explain which experiments you plan to do on the Moon (for example in the topics of geology, low gravity environment, biology, technology, robotics, astronomy etc.).

Translation:

The base studies various lunar rocks such as basalt and various minerals to better understand the lunar lithosphere. By studying the rocks, it is possible to analyze whether they contain elements, such as phosphorus, which could be used in future bases so that they do not have to be taken from Earth in the future.

The regolith and its properties are also being studied to understand whether it would be possible to create materials in addition to lunarcrete. The study of helium-3 isotopes also plays its part, because some thermonuclear reactor prototype under development on Earth could theoretically use helium-3 in nuclear fusion.

Pieces of different meteorites are also studied, analyzing their composition. The study of meteorites that have hit the moon can give more insight into what metals and precious metals can be found in the asteroid belt (it is hoped to start mining there in the future).

 

Original text:

Baasis uuritakse erinevaid Kuu kivimeid, nagu näiteks basalti ja erinevaid mineraale, et mõista Kuu litosfääri paremini. Kivimeid uurides saab analüüsida, kas need sisaldavad elemente, nagu näiteks fosforit, mida saaks tuleviku baasides rakendada, et neid ei peaks tulevikus Maalt kaasa võtma.

Uuritakse ka regoliiti ja selle omadusi, et mõista, kas sellest oleks võimalik lisaks lunarcrete’ile veel materjale luua. Oma osa on ka heelium-3 isotoopide uurimisel, sest mõni Maal arenduses olev termotuumareaktori prototüüp võiks teoorias heelium-3 tuumasünteesis rakendada.

Samuti uuritakse ka erinevate meteoriitide tükke, analüüsides nende koostist. Kuud tabanud meteoriitide uurimine võib anda rohkem aimu, milliseid metalle ja väärismetalle võib asteroidide vöös leiduda (tulevikus loodetakse seal kaevandama hakata).

5.1 – What would you include in your astronaut training programme, to help prepare the astronauts for a Moon mission?

Translation:

Before leaving the Earth, you should definitely engage in appropriate physical training, because leaving the Earth’s atmosphere is a very big challenge for the body, and a stably trained body is only beneficial in a low-gravity environment.

Another would be mental exercise. Astronauts live in the base in groups of six, which means that the Moon is physically isolated from humanity (communication with loved ones on Earth is digital). The living environment is also not the greatest, so the astronaut has to prepare himself mentally.

Training for living on a lunar base would also be necessary to ensure astronauts are competent to deal with the environment there.

 

 

Original text:

Enne Maalt lahkumist peaks kindlasti tegelema vastava füüsilise treeninguga, sest Maa atmosfäärist lahkumine on kehale väga suur väljakutse ja stabiilselt treenitud keha tuleb väikese gravitatsiooniga keskkonnas ainult kasuks.

Teine oleks vaimne treening. Astronaudid asuvad baasi elama kuuekesi ehk on Kuul valitseb suur füüsiline isoleeritus inimkonnast (suhtlus Maal olevate lähedastega on digitaalne). Ka elamiseks mõeldud keskkond pole kõige suurem, seega tuleb astronaudil ennast vaimselt ette valmistada.

Vajalik oleks ka Kuu-baasis elamise väljaõpe, et tagada astronautide pädevus sealse keskkonnaga ümberkäimiseks.

5.2 – What space vehicles will your future Moon mission need? Describe the vehicles found in your Moon camp and consider how you will travel to and from Earth, and explore new destinations on the Moon’s surface.

Translation:

There are two types of vehicles for moving on the moon near our base: the Lunar Terrain Vehicle (LTV) and the Habitable Mobility Platform (HMP). The Lunar Terrain Vehicle is a smaller vehicle, about the size of a golf cart, designed for near-base travel. This vehicle can hold two astronauts and some equipment and has no body, so the astronauts must wear spacesuits on the vehicle.

HMP is a larger vehicle with a battery capacity of approx. 500 kWh. This vehicle has a hull-covered interior where astronauts can stay without a space suit. The HMP is designed to cover difficult terrain and long distances, so trips with this vehicle can last several days.

Orion and equipment will be launched into orbit by either the Space Launch System or SpaceX’s Starship. The equipment moves non-stop towards the location of the lunar settlement, but Orion stops once at the Lunar Gateway, which is a so-called stopover for space travel.

 

Original text:

Kuul liikumiseks on meie baasi läheduses kahte sorti sõidukeid: Lunar Terrain Vehicle (LTV) ja Habitable Mobility Platform (HMP). Lunar Terrain Vehicle on väiksemamõõduline, umber golfiauto suurune sõiduk, mis on mõeldud baasilähistel sõitmiseks. See sõiduk mahutab kaks astronauti ja natuke varustust ning sellel puudub korpus, seega peavad astronaudid sõidukil skafandreid kandma.

HMP on suurem sõiduk, mille aku võimsus on ca 500 kWh. Sellel sõidukil on korpusega kaetud sisesalong, kus astronaudid saavad viibida ilma skafandrita. HMP on mõeldud läbima keerulisi maastikke ja pikki distantse, seega võivad selle sõidukiga tehtavad sõidud kesta mitu päeva.

Kosmoselaev Orioni ja varustuse viib orbiidile, kas Space Launch System või SpaceX’i Starship. Varustus liigub ilma vahepeatusteta Kuu-asula asukoha poole, kuid Orion peatub korra Lunar Gateway juures, mis on nn vahelüliks kosmosereisidel.